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SPECIAL ISSUE ON THE PACIFIC MARINE ENVIRONMENTAL LABORATORY:
50 YEARS OF INNOVATIVE RESEARCH IN OCEANOGRAPHY

PMEL OCEAN CLIMATE STATIONS 
AS REFERENCE TIME SERIES 

AND RESEARCH AGGREGATE DEVICES

ABSTRACT. The NOAA Pacific Marine Environmental Laboratory (PMEL) Ocean Climate Stations (OCS) project 
provides in situ measurements for quantifying air-sea interactions that couple the ocean and atmosphere. The proj-
ect maintains two OceanSITES surface moorings in the North Pacific, one at the Kuroshio Extension Observatory in 
the Northwest Pacific subtropical recirculation gyre and the other at Station Papa in the Northeast Pacific subpolar 
gyre. OCS mooring time series are used as in situ references for assessing satellite and numerical weather prediction 
models. A spinoff of the PMEL Tropical Atmosphere Ocean (TAO) project, OCS moorings have acted as “research 
aggregating devices.” Working with and attracting wide-ranging partners, OCS scientists have collected process- 
oriented observations of variability on diurnal, synoptic, seasonal, and interannual timescales, and trends associated 
with anthropogenic climate change. Since 2016, they have worked to expand, test, and verify the observing capabil-
ities of uncrewed surface vehicles and to develop observing strategies for integrating these unique, wind-powered 
observing platforms within the tropical Pacific and global ocean observing system. PMEL OCS has been at the cen-
ter of the UN Decade of Ocean Sciences for Sustainable Development (2021–2030) effort to develop an Observing 
Air-Sea Interactions Strategy (OASIS) that links an expanded network of in situ air-sea interaction observations to 
optimized satellite observations, improved ocean and atmospheric coupling in Earth system models, and ultimately 
improved ocean information across an array of essential climate variables for decision-makers. This retrospective 
highlights not only achievements of the PMEL OCS project but also some of its challenges. 
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INTRODUCTION
The ocean influences weather and cli-
mate through air-sea heat and moisture 
fluxes that affect the stability and vertical 
motion of the lower atmospheric bound-
ary layer, driving atmospheric circulation 
anomalies and teleconnections in weather 
patterns. Moisture originating from the 
ocean also feeds the hydrological cycle 
and thus modulates the global distribu-
tion of water resources. Disruptions to 
the hydrological cycle can cause droughts 
and floods that have enormous socie-
tal impacts. In turn, air-sea exchanges of 
heat, momentum, and mass drive ocean 
currents, eddies, and turbulent trans-
port between the surface and the ocean 
interior, setting up the distribution of 
temperature and salinity that maintains 
geostrophic currents and regulates bio-
geochemistry and nutrients in the ocean. 
The oceans absorb anthropogenic car-
bon dioxide (CO2), thereby reducing its 
impact on global atmospheric warming 
but also causing ocean chemistry changes 
called ocean acidification. Thus, in an 
effort to make transformative improve-
ments to Earth system (weather, cli-
mate, ocean, and ecosystem) forecasts 
and CO2 ocean uptake assessments, a 
new UN Decade of Ocean Sciences for 
Sustainable Development (2021–2030) 

program was formed in 2021. This 
Observing Air-Sea Interactions Strategy 
program (OASIS; Cronin et  al., 2022) 
links an expanded network of in situ air-
sea interaction observations to optimized 
satellite observations, improved ocean 
and atmospheric coupling in Earth sys-
tem models, and improved ocean infor-
mation for decision- makers. At OASIS’s 
core is a theory of change: that transfor-
mation will come by working together 
across disciplines and around the world, 
and by developing a culture of mentor-
ship and partnership.

This theory of change has been key to 
the success of the NOAA Pacific Marine 
Environmental Laboratory’s (PMEL’s) 
Ocean Climate Stations (OCS) project, 
whose mission is to provide in situ mea-
surements for quantifying air-sea inter-
actions critical to Earth’s energy (heat), 
water, carbon, and life cycles. PMEL 
OCS maintains two surface moorings in 
the North Pacific (Figure 1), one at the 
Kuroshio Extension Observatory (KEO) 
in the Northwest Pacific subtropical 
recirculation gyre and the other at Station 
Papa in the Northeast Pacific subpolar 
gyre. Each of these OCS moorings involve 
multiple partners, were initiated during 
process studies, and contribute to the 
global Ocean Sustained Interdisciplinary 
Time series Environmental Observatory 
(OceanSITES) network of moorings 
(http://www.oceansites.org), whose goal 
is to collect, deliver, and promote the 

use of long-term observations from fixed 
sites in alignment with findable, accessi-
ble, interoperable, and reusable (FAIR) 
data principles (Tanhua et al., 2019).

In this paper, we describe the origin 
story for OCS and lay out its trajectory 
through the past two decades and into 
the future. This retrospective is intended 
to highlight not only achievements of the 
project but also some of the challenges 
faced by OCS and other similar projects. 
Finally, we will discuss the role the OASIS 
theory of change has played in the growth 
of the OCS project.

OCEAN CLIMATE MOORINGS 
AND FISH AGGREGATE DEVICES
In 2003, OCS was established as an off-
shoot of the PMEL Tropical Atmosphere 
and Ocean (TAO) group at the conclu-
sion of the project entitled “Enhancement 
of the Tropical Atmosphere and Ocean 
(TAO) 95°W mooring line for the Eastern 
Pacific Investigation of Climate (EPIC) 
process study,” led by principal investi-
gator Meghan Cronin and co-principal 
investigator Michael McPhaden. As part 
of the TAO/EPIC project, three addi-
tional moorings were added to the 
easternmost TAO mooring line (95°W): 
one at 3.5°N to better resolve the equa-
torial cold tongue front, and two more 
at 10°N and 12°N to observe the 
Intertropical Convergence Zone (ITCZ) 
and Eastern Pacific Warm Pool (Cronin 
et al. 2006a,b; McPhaden et al., 2008). In 

FIGURE 1. The Ocean Sustained Interdisciplinary 
Time series Environmental Observatory (Ocean-
SITES) network of surface moorings as of June 
2023. Locations of moorings at Ocean Climate 
Stations Kuroshio Extension Observatory (KEO) 
and Papa, along with the retired Agulhas Return 
Current (ARC) and JAMSTEC-KEO (JKEO) sites, 
are shown on a map of currently operational 
OceanSITES meteorological (small square) and 
air-sea flux (large square) sites overlaid on the 
mean net surface heat flux (W m–2) computed 
from OAFlux-HR and CERES EBAF for 2001–
2015. White contours show the climatological 
sea surface height and can be interpreted as 
approximate streamlines of geostrophic surface 
flow. Online supplementary Figure S1 provides 
a generic map of the active OceanSITES sur-
face mooring sites as of June 2023. Based on 
Figure 8 from Cronin et al. (2019)
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addition, to serve the EPIC research com-
munity and operational aspects of the 
array, all 10 moorings were enhanced to 
measure and telemeter downwelling solar 
and longwave surface radiation, rain rate, 
barometric pressure, salinity at seven 
depths between 1 m and 120 m, and hori-
zontal currents at 10 m. Moorings within 
the 5°N to 5°S equatorial band were 
also enhanced with an additional cur-
rent meter at 40 m. Unfortunately, due 
to biofouling and pelagic fisheries in the 
region, the moorings became fish aggre-
gating devices (Dempster and Taquet, 
2004). Intense vandalism by the inter-
national fishing fleet resulted in many 
sensor and system failures and a dis-
couraging loss of data and equipment. 
Ultimately, it was decided to not leave a 
legacy enhanced 95°W line. Instead, with 
approval granted by the NOAA Climate 
Programs Office, at the conclusion of 
the TAO/EPIC project, the remaining 
equipment was distributed between the 
Indian Ocean Research Moored Array 
for African-Asian-Australian Monsoon 
Analysis and Prediction (RAMA) led by 
Michael McPhaden, and a new extratrop-
ical site, KEO, led by author Cronin. 

OCEAN CLIMATE STATIONS 
AS RESEARCH AGGREGATE 
DEVICES
Kuroshio Extension Observatory
The KEO surface mooring was deployed 
in June 2004 (Figure 2) as part of the 
two-year National Science Foundation 
(NSF)-funded Kuroshio Extension 
System Study (KESS), a process study 
designed to improve understanding of the 
ocean dynamics affecting the Kuroshio 
Extension (KE) and its interactions with 
recirculation gyres to the north and south 
(Donohue et al., 2008; Jayne et al., 2009). 
While KEO is south of the strongest 
KE jet (Figure 1), it is subject to strong 
eddy currents, waves, and winds asso-
ciated with frequent winter storms and 
warm-season tropical cyclones. In this 
region, current speeds can occasionally 
exceed 1.5 m s–1, and during typhoons, 
winds can exceed 35 m s–1. To survive 
these harsh conditions, the mooring line’s 
scope was increased, fairings were added 
to the upper portion of the mooring 
line, and the buoy buoyancy and anchor 
weight were both increased. A load cell 
was added to provide data to fine-tune the 
engineering mooring design model used 

for KEO. The wind sensor was replaced 
with a sonic anemometer that could with-
stand stronger winds, and duplicate mete-
orological sensors were added to improve 
the chances of providing year-long data 
sets (Lawrence-Slavas et al., 2006). With a 
full suite of meteorological, oceanic, and 
biogeochemical sensors, KEO monitors 
the large air-sea fluxes of heat, moisture, 
momentum, and carbon dioxide; ocean 
acidification and upper ocean tempera-
ture and salinity (including a mixed layer 
depth that ranged from ~10 m to nearly 
500 m below the surface); and near-surface 
currents and shears (Cronin et al., 2013).

Building upon the long-term part-
nership between NOAA PMEL and the 
Japan Agency for Marine-Earth Science 
and Technology (JAMSTEC), in 2005, a 
Japanese KEO (J-KEO) was established 
north of the KE (Figures 1 and 2). The two 
KEO moorings, north and south of the KE, 
enabled frontal studies, including research 
into the impacts of the KE front on air-sea 
fluxes (Konda et  al., 2010) and weather 
patterns (Tomita et  al., 2021a,b). These 
frontal studies were expanded as part of 
the Japanese Hot-Spot experiment (2010–
2014) to include intensive observations 

FIGURE 2. Timeline of the Kuroshio Extension Observatory (KEO) and observations in the KEO region. NSF = National Science Foundation. JAMSTEC = 
Japan Agency for Marine-Earth Science and Technology. UW PAL = University of Washington Passive Acoustic Listener.
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and model studies of the atmospheric 
response to the very large wintertime 
air-sea heat fluxes (“hot spots”) found 
in western boundary current regions 
(Nakamura et al., 2015). While the J-KEO 
site (Figure 1) was discontinued in 2013, 
in 2014 (Figure 2) JAMSTEC deployed a 
sediment trap mooring next to the NOAA 
surface mooring at KEO (Honda et  al., 
2018). Likewise, the follow-on Japanese 
Hot-Spot-2 experiment (2019–2023) has 
focused on the multidisciplinary impacts 
of these large air-sea fluxes, includ-
ing those that affect the ocean’s biogeo-
chemistry. China has now deployed a set 
of C-KEO moorings north and south of 
the KE jet, and Korea and other nations 
are making coordinated intensive obser-
vations in the Kuroshio and its adjacent 
seas. The NOAA OCS surface mooring 
at KEO is regularly enhanced with sen-
sors from partners in Japan and at the 
University of Washington and welcomes 
collaborative work with other partners. 
Hearkening back to a golden era of inter-
national collaboration from 1965 to 1979, 
spurred by the Cooperative Studies of the 
Kuroshio and Its Adjacent Seas (CSK), in 
2021, a Second CSK (CSK-2) was formed 
that includes roughly a dozen projects 
from member states, including one from 
NOAA (USA) and JAMSTEC (Japan) for 
the KEO station.

KEO data, like all OCS data, are pub-
licly available and used widely. Here, we 
highlight just a few of the many scientific 
studies using KEO data. During the KESS 
experiment, the KE jet switched from a 
quasi-stable to an unstable state (Donohue 
et  al., 2008). The KEO surface moor-
ing was critical for monitoring the inter-
annual variations in Subtropical Mode 
Water formation within the recircula-
tion gyre south of the KE (Rainville et al., 
2014). Cronin et al. (2015) show that the 
very deep wintertime surface mixed layer 
at KEO leads to an effective heat capacity 
that is much larger than it is on the cold 
side of the KE jet. Consequently, sea sur-
face temperature (SST) on the warm side 
of the KE jet is much less sensitive to 
air-sea heat fluxes than it is on the cold 

side. Indeed, even though surface ocean 
heat loss is larger over the warmer waters 
south of the KE jet during winter, SST 
cools more rapidly on the north side of 
the KE, leading to a strengthening of the 
SST front (Tozuka et  al., 2017). Further 
analyses found that throughout the global 
ocean, but particularly in regions of 
strong baroclinic currents, a cross-front 
gradient in the mixed layer depth can play 
a role in strengthening and weakening 
the SST front (Ohishi et al., 2017; Tozuka 
et al., 2017, 2018, 2023). Because the air-
sea heat fluxes depend in part upon the 
strength of the SST front, poor represen-
tation of mixed layer depth could lead to 
negative rather than positive feedbacks 
between the SST front and ocean surface 
heat loss. This could partially explain why 
coarse resolution coupled models, which 
typically have poor mixed layer physics, 
have an unrealistic atmospheric response 
to ocean forcing in western boundary cur-
rent regions (Tozuka et al., 2017). 

KEO data have been used to analyze 
the ocean’s response to an extratropi-
cal transition of a class 1 typhoon (Bond 
et al., 2011; Wada et al., 2013). Using sur-
face mooring and subsurface sediment 
trap data, Honda et al. (2018) show that 
the typhoons did not cause a significant 
export of carbon to depth; however, cold 
core eddies did. The anomalously shal-
low pycnocline at the center of cold core 
eddies brings nutrients into the euphotic 
zone, leading to subsurface blooms that 
are followed by sediment accumulations 
in the deep ocean. This explains the mys-
tery of how this otherwise oligotrophic 
region can support a large biogenic flux.

KEO is one of the few extratropi-
cal sites within the global network of 
OceanSITES stations and is unique in its 
setting within a western boundary cur-
rent system (Figure 1). Because of the 
large dynamic range of environmental 
conditions and the multiple co-located 
variables observed at KEO, this site has 
become a favorite testbed for validat-
ing satellite products (e.g., Tomita et al., 
2019; Takeyama et  al., 2019; Koizumi 
et al., 2020) and for assessing numerical 

weather prediction models (Kubota et al., 
2008; Zhang et al., 2016). While the World 
Meteorological Organization numbers 
for the KEO and Papa moorings iden-
tify their products as reference data that 
should be withheld from assimilation, it 
is unclear whether that actually happens. 
However, even if ingested by data assim-
ilation software, these data remain use-
ful for intercomparisons, because if the 
buoy observations differ significantly 
from the modeled state, they are rejected 
and thus are independent of the prod-
uct. Efforts to determine whether or not 
these data are assimilated in the numer-
ical weather prediction reanalysis prod-
ucts are strongly encouraged and require 
close collaboration between observation-
alists and modelers. In addition to iden-
tifying mean biases and scatter in dif-
ferences, the high resolution, co-located 
time series can often be used to diagnose 
the cause of the error by identifying dis-
crepancies in, for example, the variables 
(e.g.,  humidity, winds, SST) or the phe-
nomena (e.g.,  gustiness, onshore or off-
shore winds, clouds, fronts) or the bulk 
flux parameterization. Such information 
helps model developers improve model 
physics and products. 

 
Ocean Station Papa
OCS formed in earnest in 2007 when 
the PMEL OCS surface mooring was 
deployed at Station Papa (50°N, 145°W) 
through an NSF-funded carbon cycle 
experiment (Emerson et  al., 2011) and 
with ship time provided by the Canadian 
Department of Fisheries and Oceans 
(DFO) Line P program (Freeland, 2007). 
Station Papa (Figure 3), located in the 
Northeast Pacific subpolar gyre, 850 nm 
west of British Columbia, is one of the old-
est ocean time series in the world. From 
1949 to 1981, an ocean weather ship was 
stationed at Papa, and since 1956, regu-
lar ship-based hydrographic “Line P” sec-
tions between Station Papa and the coast 
have been made. At the conclusion of 
the NSF experiment, the NOAA Climate 
Programs Office (now Global Ocean 
Monitoring and Observing, or GOMO) 



Oceanography | Vol. 36, No. 2–350

continued funding the PMEL OCS sur-
face mooring as a contribution to the 
OceanSITES network of long-term refer-
ence time series. As with KEO, the PMEL 
OCS surface mooring at Papa monitors 
air-sea fluxes of heat, moisture, momen-
tum, and carbon dioxide; surface and 
subsurface temperature and salinity; and 
upper ocean currents. In addition, the 
Papa mooring was the first deep ocean 
platform to establish a dual-parameter 
autonomous time series (seawater pCO2 
and pH) for monitoring ocean acidifi-
cation (Sutton et  al., 2016). This pack-
age was later added to the KEO mooring 
and other open ocean and coastal moor-
ings supported by GOMO and the NOAA 
Ocean Acidification Program (Sutton and 
Sabine, 2023, in this issue). 

Just as the Line P program with its reg-
ular cruises to Station Papa was a major 
attraction for the OCS surface mooring, 
the ongoing OCS observations have 

attracted many new partners. In 2010, 
with funding from NSF, the first deep 
ocean waverider mooring was deployed 
by the University of Washington’s Applied 
Physics Laboratory (UW/APL) at Station 
Papa. Good agreement between the bulk 
wind stress measured by the OCS surface 
mooring and equilibrated wind stress esti-
mated from the wave spectrum (Thomson 
et  al., 2013) demonstrated a new meth-
odology for computing wind stress from 
wave measurements that is now being 
used commercially by companies such as 
SOFAR Inc. (Voermans et al., 2020). The 
UW/APL wave measurements are now 
being combined with the meteorologi-
cal observations and backscatter intensity 
measurements from a downward look-
ing acoustic Doppler current profiler on 
the PMEL OCS surface mooring to inves-
tigate the connections between wind 
forcing, surface wave breaking, bubble 
production, gas exchange, and ambient 

underwater sound, with a particular focus 
on high sea states (Zappa et  al., 2007; 
Liang et al., 2017). 

In 2013, the NSF-funded Ocean 
Observatories Initiative enhanced Station 
Papa (Figure 3) with subsurface moorings 
and underwater gliders to make it one of 
four (now two) global nodes (Trowbridge 
et al., 2019), relying upon the PMEL OCS 
surface mooring to serve as its “central 
mooring.” In 2015, NOAA PMEL deployed 
a noise reference station sub surface 
mooring at Station Papa that monitors 
the soundscape, from blue (Balaenoptera 
musculus), fin (Balaenoptera physalus), 
and other vocal baleen and odontocete 
cetacean species to human-made sound 
associated with ship traffic (Pearson et al., 
2023). Figure 3 shows the full Ocean 
Station Papa observatory.

As with KEO, we highlight only a cou-
ple of the many scientific studies that have 
taken advantage of PMEL OCS Station 
Papa data. Using air-sea heat flux, ocean 
mixed layer depth, temperature, and cur-
rent measurements from the OCS surface 
mooring, and SST gradients from a satel-
lite blended product, Cronin et al. (2015) 
closed the surface mixed layer heat budget 
and estimated diffusivity across the base 
of the mixed layer from the budget resid-
ual. Its annual climatology was then used 
in the dissolved inorganic carbon and 
total alkalinity budgets computed from 
the mooring observations and climato-
logical fields to estimate the net commu-
nity production and calcium carbonate 
production components of the biolog-
ical carbon pump (Fassbender et  al., 
2016). A similar study was later done at 
KEO (Fassbender et  al., 2017). Among 
the most profound research originating at 
Station Papa was the observation of sub-
stantial marine heatwaves in 2013–2016 
and 2019, with peak seawater temperature 
anomalies in February 2014 exceeding 
+2.5°C in the upper 100 m of the north-
eastern Pacific. Bond et al. (2015) referred 
to the 2013 marine heatwave as “the Blob,” 
a moniker that has successfully commu-
nicated the extreme nature of this ocean 
anomaly to public audiences.

FIGURE 3. Ocean 
Station Papa observa-
tory as of June 2023. 
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CHALLENGES
Harsh open-ocean environments, bio-
fouling, and vandalism occasionally lead 
to sensor and system failures or broken 
mooring lines, with resultant time series 
gaps. Through careful engineering and 
duplicate systems, these failures are min-
imized, although they remain an ongoing 
risk. Obtaining ship time for the annual 
turnaround cruises, and unanticipated 
breaks, has been one of the greatest chal-
lenges faced by the PMEL OCS project. 
NOAA, PMEL, and the entire OCS team 
are deeply grateful to partners in Japan, 
Canada, South Africa, France, and the 
United States who have provided ship 
time both planned and unplanned. 

Despite the involvement of many 
active partnerships, a broken moor-
ing line resulted in the discontinuation 
of a new station in the Agulhas Return 
Current intended for the OceanSITES 
network. Like KEO and Papa, the Agulhas 
Return Current mooring (Figure 1) was 
deployed as part of an NSF-funded pro-
cess study, the Agulhas Current Time 
Series Experiment (Beal et  al., 2015). 
Ship time for its deployment was pro-
vided by the Agulhas–Somali Current 
Large Marine Ecosystem program. 
Unfortunately, after a couple of months, 
the mooring broke. Although the drifting 
buoy and all its sensors were recovered by 
R/V Marion Dufresne, which was en route 
to Antarctica, sustained funding from 
NOAA GOMO could not be secured, and 
the mooring was not redeployed.

Deep ocean moorings are difficult to 
scale and require mariners with highly 
specialized at-sea skills. Facing a 10% cut 
or year after year of flat funding, what part 
of a mooring can be eliminated? Sensors? 
Satellite telemetry? Calibrations? Ship 
time? Personnel? OCS surface moor-
ing managers have tried to balance the 
needs for advanced instrumentation and 
redundancy with the realities of operating 
within a limited budget. Partner groups, 
since inception, have supported and 
funded various systems, such as the CO2 
and ocean acidification suite of sensors. 
In FY22, the core OCS cost of operating 

both KEO and Papa, not including ship 
time or partner systems, was $825K. 
Until recently, ship time for Papa was pro-
vided through the Line P program. The 
Papa mooring observatory (Figure 3), 
however, has grown beyond the capac-
ity of CCGS Tully. Now the three moor-
ing groups work together, purchasing 
sea days on each other’s cruises to com-
plete the work in the most efficient way. 
At the start of the OCS project, nearly 
two decades ago, the OCS project funded 
23 people, but each for only a few weeks at 
a time. The project still outsources some 
work to PMEL’s TAO group (now called 
Global Tropical Moored Buoy Array, 
or GTMBA) and PMEL’s Engineering 
Development Division, and routinely 
brings a second or third cruise partici-
pant from other groups. Most of the tech-
nical work, however, is performed by just 
two highly experienced ocean profes-
sionals (authors Patrick Berk and Nathan 
Anderson), with scientific leadership pro-
vided by the principal investigator, author 
Cronin, and the co-principal investiga-
tor, author Zhang, who is supported for 
three to six months through the OCS 
budget. The minimal co-principal inves-
tigator support and lack of support for 
early career technicians, scientists, post-
docs, and students is a lost opportunity 
for incubating talent and serving the sci-
entific community. As OCS looks toward 
the future and the need grows to identify 
the next generation to carry the project 
forward, succession planning will become 
increasingly important. 

 
THE FUTURE
Although surface moorings can some-
times be fish aggregating devices and 
subject to vandalism, these platforms are 
uniquely suited for creating long time 
series of many essential ocean variables, 
and they provide extraordinary opportu-
nities for research. Indeed, we have shown 
through the stories of KEO and Station 
Papa how regularly scheduled research 
cruises, such as the DFO Line P program, 
and long-term surface moorings can act 
as research aggregating devices, where a 

core infrastructure is leveraged by part-
ners for multidisciplinary observations 
serving a wide range of users well beyond 
the original mission. These co-located 
enhancements add dimension that can 
foster new insights into the complexities 
of the Earth system. 

As the climate changes due to anthro-
pogenic greenhouse gas emissions, 
the long time series will be increas-
ingly important for understanding 
impacts not only on ocean heat con-
tent but also on ocean chemistry, the 
ocean-  atmosphere hydrological cycle, 
and the marine ecosystem. Disturbing 
trends in these processes that are emerg-
ing at both KEO and Papa (Sutton et al., 
2017) require action. Looking forward, 
the OCS project at NOAA PMEL will 
continue to develop low- carbon foot-
print oceanographic observing meth-
ods. Since 2016, OCS has expanded its 
scope to include the use of uncrewed 
surface vehicles (USVs) to sample the 
ocean. “Saildrones” are USVs powered 
by wind for propulsion and solar energy 
for electronics. Transforming a sailing 
drone into an ocean observing platform 
was a major PMEL effort in partnership 
with Saildrone Inc. (Meinig et al., 2019). 
In order to develop an adaptive sam-
pling strategy for integrating USVs into 
the Tropical Pacific Observing System 
(TPOS), by spring 2023, OCS had con-
ducted five USV missions to the equato-
rial Pacific (Figure 4; Zhang et al., 2019; 
Wills et al., 2021). The USV suite of sur-
face sensors is similar to that on OCS 
buoys, with the capability to monitor air-
sea heat, momentum, and carbon fluxes, 
as well as upper ocean currents. In our 
upcoming 2023 mission from Hawai‘i 
to 0°, 155°W, one saildrone will carry an 
echo sounder for observing biomass dis-
tribution from a range of trophic levels, 
thus adding a fisheries dimension to the 
integrated TPOS observations.

Since the early 1980s, it has been rec-
ognized that air-sea interactions in the 
tropical Pacific associated with El Niño 
can cause worldwide patterns of anoma-
lous drought and flooding on inter annual 
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timescales. The TPOS mooring array was 
designed in the late 1980s to monitor key 
elements of these air-sea interactions. 
Newer technologies, however, such as 
Argo floats (Roemmich et al., 2009) and 
satellites have greatly expanded the TPOS 
capability, while ship time has become 
more expensive. Thus, from 2014 to 2020, 
an international review of the integrated 
TPOS, referred to as TPOS-2020, was 
carried out (Cravatte et al., 2016; Kessler 
et  al., 2019). Lessons learned through 
OCS participation in this review process 
are now being applied globally through 
the OASIS UN Decade of Ocean Science 
for Sustainable Development program. 
Likewise, lessons learned through 
20 years of working with partners on the 
OCS project have led to the formation of 
the OASIS Theory of Change: that trans-
formation and opportunities will come by 
working together across disciplines and 
around the world, and by developing a 
culture of mentorship and partnership. 

SUPPLEMENTARY MATERIALS
Supplementary Figure S1 is available online at 
https://doi.org/10.5670/oceanog.2023.224.
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